RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.

نویسندگان

  • S Y Le
  • N Pattabiraman
  • J V Maizel
چکیده

We have used molecular modeling techniques to model the RNA tertiary structure of the viral RNA element (referred to as domain II of Rev responsive element, RRE) bound by the Rev protein of HIV. In this study, the initial three-dimensional model was built from its established RNA secondary structure, including three non-Watson-Crick G:G, G:A and G:U base pairs. Molecular dynamics (MD) simulations were performed with hydrated or unhydrated sodium ions. Our results indicate that the non-Watson-Crick base pairs in the simulation with unhydrated sodium ions and water are more stable than those with hydrated sodium ions only. The RNA can maintain its compact double helical structure throughout the course of the MD simulations with water and unhydrated sodium ions, although the non-Watson-Crick base pairs and two bulge loops show much more flexibility and conformational distortion than the classical RNA helical region. The distinct distortion of the sugar-phosphate backbone significantly widens the RNA major groove so that the major groove is readily accessible for hydrogen bonding by specific Rev binding. This model emphasizes the importance of specific hydrogen bonding in the stabilization of the three-dimensional structure of the HIV Rev core binding element, not only between the nucleotide bases, but also among the ribose hydroxyls, phosphate anionic oxygens, base oxygens and nitrogens, and bridging water molecules. Moreover, our results suggest that sodium ions play an important role in the formation of base pairs G:G and G:A of the RRE by a manner similar to the arginine of the Rev-RRE complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric nomenclature and classification of RNA base pairs.

Non-Watson-Crick base pairs mediate specific interactions responsible for RNA-RNA self-assembly and RNA-protein recognition. An unambiguous and descriptive nomenclature with well-defined and nonoverlapping parameters is needed to communicate concisely structural information about RNA base pairs. The definitions should reflect underlying molecular structures and interactions and, thus, facilitat...

متن کامل

Pii: S0968-0896(97)00048-5

-We have described a class of molecules, called tethered oligonucleotide probes (TOPs), that bind RNA on the basis of both sequence and structure. TOPs consist of two short oligonucleotides joined by a tether whose length and composition may be varied using chemical synthesis. In a triplex TOP, one oligonucleotide recognizes a short single-stranded region in a target RNA through the formation o...

متن کامل

A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme.

Kissing loops are tertiary structure elements that often play key roles in functional RNAs. In the Neurospora VS ribozyme, a kissing-loop interaction between the stem-loop I (SLI) substrate and stem-loop V (SLV) of the catalytic domain is known to play an important role in substrate recognition. In addition, this I/V kissing-loop interaction is associated with a helix shift in SLI that activate...

متن کامل

Non-Watson-Crick base pairs in RNA-protein recognition.

The cellular functions of most RNA molecules involve protein binding, and non-Watson-Crick base pairs are hallmark sites for interactions with proteins. The determination of three-dimensional structures of RNA-peptide and RNA-protein complexes reveals the molecular basis of non-Watson-Crick base-pair recognition.

متن کامل

Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA

Molecular mechanics with all-atom models was used to understand the conformational preference of tandem guanine-adenine (GA) noncanonical pairs in RNA. These tandem GA pairs play important roles in determining stability, flexibility, and structural dynamics of RNA tertiary structures. Previous solution structures showed that these tandem GA pairs adopt either imino (cis Watson-Crick/Watson-Cric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 19  شماره 

صفحات  -

تاریخ انتشار 1994